Research Note

Expression of a Serratia marcescens Chitinase Gene in Sinorhizobium fredii USDA191 and Sinorhizobium meliloti RCR2011 Impedes Soybean and Alfalfa Nodulation

Hari B. Krishnan, Kil Yong Kim, and Ammulu Hari Krishnan
Department of Plant Pathology, University of Missouri, Columbia 65211, U.S.A.
Accepted 28 April 1999.

A gene encoding chitinase from Serratia marcescens BJL200 was cloned into a broad-host-range vector (pRK415) and mobilized into Sinorhizobium fredii USDA191. Chitinolytic activity was detected in S. fredii USDA191 transconjugants that carried the S. marcescens chiB gene. Chitinase-producing S. fredii USDA191 formed nodules on soybean cultivar McCall. However, there was a delay in nodule formation and a marked decrease in the total number of nodules formed by the chitinase-producing S. fredii in comparison with the wild-type strain. Expression of chitinase in S. meliloti RCR2011 also impeded alfalfa nodulation. Thin-layer chromatography of 14C-labeled Nod factors from chitinase-producing S. fredii USDA191 revealed hydrolysis of lipochitooligosaccharides.

Pesticides are widely used to control plant diseases. However, most pesticides are hazardous to the health of humans and animals. They also have deleterious effects on ecological systems. Biological control promises to be a useful alternative approach in the control of plant pathogens (Weller 1988). Chitin, a β-1,4-linked polymer of N-acetyl glucosamine (GlcNAc), is an important structural component of insects, fungi, and nematodes (Monreal and Reese 1969). Several organisms, including higher plants, fungi, and bacteria, produce chitinases (EC 3.2.1.14) that cleave the glycosidic bonds in the chitin chain by either an endolytic or exolytic mechanism (Monreal and Reese 1969). It has been shown that application of chitin can reduce plant disease caused by certain soil fungi and nematodes (Mian et al. 1982; Shapira et al. 1989). This beneficial effect has been attributed to proliferation of organisms that secrete chitin-degrading enzymes (Mankau and Das 1969; Mercer et al. 1992; Miller and Sands 1977). Based on the potential role of chitinase as an anti-fungal agent (Schlumbaum et al. 1986; Broglie et al. 1991), attempts have been made to express chitinase genes in rhizosphere-colonizing soil bacteria to control pathogenic fungi (Fuchs et al. 1986; Sitrit et al. 1993).

Serratia marcescens, a gram-negative bacterium, is very efficient in the degradation of chitin because of its ability to produce different chitinolytic enzymes. Two chitinase genes (chiA and chiB) have been isolated from S. marcescens (Jones et al. 1986; Brurberg et al. 1995). Inactivation of one of the chitinase genes greatly reduced the ability of this bacterium to inhibit the growth of Fusarium oxysporum f. sp. pisi (Fop), a fungal pathogen (Jones et al. 1986). Attempts have also been made to express the S. marcescens chitinase in Pseudomonas spp. and plant symbiotic bacteria such as Rhizobium spp. to control soil pathogens (Fuchs et al. 1986; Sitrit et al. 1993). It was proposed that, since Rhizobium spp. can efficiently colonize the roots of hosts and nonhosts in large numbers, they could serve as a powerful biocontrol agents. Sitrit et al. (1993) expressed the chiA gene from S. marcescens in R. meliloti and have demonstrated that the nodule extracts from chiA-expressing alfalfa plants caused lysis of Rhizoctonia solani hyphal tips. Interestingly, chitinase-producing R. meliloti strains also had no effect on alfalfa symbiosis. This observation is intriguing since rhizobium-induced nodule formation in legumes is initiated by nod factors, which are modified oligomers of N-acetylglucosamine (GlcNAc). Nod factors can be hydrolyzed by chitinases (Staehelin et al. 1994; Minic et al. 1998). Hence, the expression of chitinase genes in R. meliloti may lead to the breakdown of the Nod factors that will lead to defective symbiosis. We therefore decided to examine the consequences of expressing the chitinase gene in Sinorhizobium fredii USDA191 on soybean symbiosis.

A plasmid (pMAY2-10) containing the chiB gene of S. marcescens BJL200 (Sundheim et al. 1988) as a 1.8-kb EcoRI/HindIII fragment in pGEM-7f (+) was obtained from May Brurberg (Agricultural University of Norway). This plasmid was digested with EcoRI and HindIII and recloned into pRK415, a broad-host mobilizable vector (Keen et al. 1988), digested with the same enzymes. The resulting plasmid was named pSMC1 and mobilized into S. fredii USDA191 by tri-
parental mating with the helper plasmid pRK2013. Transconjugants, which were resistant to tetracycline, were grown in YEM (Vincent 1970) media. \textit{S. fredii} USDA191(pRK415) and USDA191(pSMC1) exhibited similar growth characteristics and had identical doubling time. In order to see whether the chitinase gene was being expressed in \textit{S. fredii} USDA191, we performed a highly sensitive silver stain method for detecting chitinolytic activity after sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE; Marek et al. 1995). Three-day-old, 5-ml cultures of \textit{S. fredii} USDA191 containing \textit{chiB} and pRK415 were centrifuged and the pellet was resuspended in 500 µl of SDS-sample buffer without β-mercaptoethanol. The samples were boiled for 5 min and 10 µl aliquots were resolved by SDS-PAGE (Laemmli 1970). The resolving gel contained 0.01% glycol chitin. After electrophoresis, the chitinolytic activity was detected essentially as described earlier (Marek et al. 1995). Proteins with chitinolytic activity appeared as clear zones on a dark brown background. Extracts from \textit{S. fredii} USDA191 carrying \textit{chiB} revealed chitinase activity associated with a 56-kDa protein (Fig. 1). Addition of genistein, an isoflavonoid that induces the expression of nodulation genes of \textit{S. fredii}, had no effect on the chitinase activity (Fig. 1, lane 3). Protein extracts from \textit{S. fredii} carrying the vector pRK415 alone revealed no chitinase activity (Fig. 1, lane 1). This result confirmed that the \textit{S. marcescens chiB} was being expressed in \textit{S. fredii}. Subcellular fractionation of the cell extracts from \textit{S. fredii} USDA191 expressing \textit{chiB} revealed that the chitinase activity was associated with the cytosol and the periplasm (data not shown). The estimated molecular mass of the chitinase was 56 kDa, which is the same size as the one expressed in \textit{S. marcescens} (Bruberg et al. 1995).

We also investigated the consequence of expressing the chitinase in \textit{S. fredii} on soybean nodulation. Seeds of soybean \textit{(Glycine max (L.) Merr.)} cultivar McCall were surface sterilized and germinated on water agar plates at 30°C. The roots of 3-day-old soybean seedlings were dip inoculated with cells of USDA191 containing either \textit{chiB} or the cloning vector pRK415 (10⁶ cells per ml). The seedlings were transferred to autoclaved plastic growth pouches that had been prewetted with distilled water. Soybean plants were grown in a growth chamber and the appearance of the nodules was monitored from day 5 after inoculation and alternate days thereafter until day 20. The kinetics of nodulation and final nodule numbers induced by USDA191 (pSMC1) were drastically different from those of USDA191 (pRK415). Chitinase-producing USDA191 exhibited delayed nodulation, with the nodules first visible at 9 days after inoculation (Fig. 2). At day 20, McCall soybean inoculated with USDA191 (pRK415) had 32 nodules per plant, while the chitinase-producing strain had only 12 nodules per plant. We also measured the nodule acetylene-reduction rates by the method of Schwinghamer et al. (1970). The nitrogenase activity expressed on a nodule fresh weight basis was similar between these two treatments (data not shown).

\textit{S. fredii} synthesizes an array of Nod factors consisting of a series of β-1,4-linked oligomers of N-acetyl-d-glucosamine, with degrees of polymerization ranging from three to five (Bec-Ferte et al. 1994 and 1996). Chitinase readily digests the Nod factors of \textit{S. fredii} and breaks down into chitobiose and chitotrioses (Bec-Ferte et al. 1996). In order to examine whether expressing chitinase in \textit{S. fredii} had any effect on the Nod factors, we labeled the USDA191 cells with 14C-acetate in the presence and absence of 1 µM genistein. Supernatant from the labeled cultures was loaded on a C18 reversed-phase SepPak cartridge (Waters Corp., Milford, MA). The column

![Fig. 1. Expression of \textit{Serratia marcescens} chitinase in \textit{Sinorhizobium fredii} USDA191. Total proteins were resolved on a 13.5% sodium dodecyl–polyacrylamide electrophoresis gel and the chitinolytic activity was detected by silver stain. The resolving gel contained 0.01% (wt/vol) glycol chitin. Lane 1: USDA191 (pRK415); lane 2: USDA191 (pSMC1); and lane 3: USDA191 (pSMC1) grown in the presence of 1 µM genistein. β-Mercaptoethanol was omitted in all protein samples.](image)

![Fig. 2. Nodulation of cv. McCall soybean by \textit{Sinorhizobium fredii} USDA191 expressing \textit{Serratia marcescens} chitinase. Seedlings were inoculated with either USDA191 (pRK415) (circles) or USDA191 (pSMC1) (squares). Each point represents the mean nodule number from 32 plants from two independent experiments. Standard errors were less than 9% of means.](image)
was washed with water and the Nod factors were eluted with methanol and concentrated to about 100 µl. Nod factors were resolved on octadecyl silica reversed-phase thin-layer chromatography (TLC) plates as described earlier (Bec-Ferte et al. 1994). Labeled Nod factors were visualized by autoradiography. Figure 3 shows at least four 14C-labeled spots from the culture of USDA191 that had been grown in the presence of genistein (Fig. 3, lane 2). These radioactive spots were absent in uninduced cultures of USDA191 (Fig. 3, lane 1). The chitinase-producing USDA191 also revealed several 14C-labeled spots, but their Rf values were different from those of the non-chitinase-producing strain. One heavily 14C-labeled spot seen in USDA191 (Fig. 3, lane 2) was missing in the chitinase-producing strain; instead, few additional spots were evident (Fig. 3, lane 4). These results indicated that the Nod factors were being hydrolyzed by S. marcescens chitinase, resulting in altered Nod factors.

Earlier, Sitrit et al. (1993) reported R. meliloti expressing S. marcescens chitinase did not influence nodule formation, plant growth, or nitrogen fixing ability of alfalfa. In addition, these authors showed that protein extracts from nodules initiated by chitinase-producing Rhizobium spp. were able to degrade the hyphal tips of R. solani. We also tested the extracts from soybean nodules initiated by chitinase-producing and non-producing strains of USDA191, and found that both extracts were able to lyse R. solani hyphal tips. The protein extracts from soybean root nodules contained multiple chitinase activity as visualized by the SDS-PAGE/silver chitinolytic activity stain (data not shown). We believe that the lysis of R. solani hyphal tips was probably mediated by plant chitinases. We also wanted to test whether expressing the chiB gene in S. meliloti had any adverse effect on alfalfa nodulation. We

![Fig. 3. Thin-layer chromatography (TLC) analysis of radiolabeled compounds produced by Sinorhizobium fredii USDA191. Bacteria were grown in presence of 14C-acetate in the presence or absence of 1 µM genistein. Radiolabeled compounds were resolved on octadecyl silica reversed-phase TLC plates and subjected to autoradiography. Samples: lane 1, S. fredii USDA191(pRK415), lane 2, S. fredii USDA191(pRK415) grown in the presence of 1 µM genistein; lane 3, S. fredii USDA191(pSMC1); lane 4, S. fredii USDA191(pSMC1) grown in the presence of 1 µM genistein.](image)

![Fig. 4. Expression of Serratia marcescens chitinase in Sinorhizobium meliloti RCR2011. Total proteins were resolved on a 13.5% sodium dodecyl sulfate–polyacrylamide electrophoresis gel and the chitinolytic activity was detected by silver stain. The resolving gel contained 0.01% (wt/vol) glycol chitin. Lane 1: RCR2011 (pRK415); lane 2: RCR2011 (pSMC1); lane 3: RCR2011 (pSMC1) grown in the presence of 1 µM luteolin. β-Mercaptoethanol was omitted in all protein samples.](image)

![Fig. 5. Nodulation of alfalfa cv. Nitro by Sinorhizobium meliloti RCR2011 expressing Serratia marcescens chitinase. Seedlings were inoculated with either RCR2011 (pRK415) (circles) or RCR2011 (pSMC1) (squares). Each point represents the mean nodule number from 32 plants from two independent experiments. Standard errors were less than 7% of means.](image)
therefore mobilized the \textit{chiB} construct into \textit{S. meliloti}
RCR2011 and verified whether the transconjugants can pro-
duce chitinase. SDS-silver stain chitinolytic activity gels
clearly established that the transconjugants were able to pro-
duce chitinase of about 56 kDa (Fig. 4). Chitinase-producing
RCR2011 also exhibited delayed nodulation and reduced nod-
ule numbers on alfalfa cv. Nitro (Fig. 5). Therefore, it is evi-
dent that expressing the \textit{chiB} gene in RCR2011 does affect
nodulation. This result differs from the earlier study (Sitrit et
al. 1993). This could be due to the fact that we expressed
\textit{chiB}, while the other study expressed \textit{chiA}. \textit{chiA} encodes the
most abundant chitinase in \textit{S. marcescens} and it is secreted in
culture media. \textit{chiB}, on the other hand, is localized in the pe-
riplasm and is found in the culture medium only after pro-
longed culturing times, presumably due to cell lysis (Fuchs et
al. 1986; Jones et al. 1986; Brurberg et al. 1995). It is most
likely that the subcellular location of the chitinase could have
a direct influence on the breakdown of the Nod factors. Since
Nod factors accumulate primarily in the membranes (Orgambide et al. 1995), the periplasm-located chitinase
may be best suited to act on these signal molecules.

ACKNOWLEDGMENTS

This work was supported by a special grant from the United States
Department of Agriculture, and is Journal Series No. 12,900 of the Mis-
souri Agricultural Experiment Station. We thank May Brurberg for pro-
viding us with \textit{S. marcescens chiB} plasmid (pMAY2-10) and Jerry White
for critical reading of the manuscript.

LITERATURE CITED

Bec-Ferte, M. P., Krishnan, H. B., Prome, D., Savagnac, A., Pueppke, S.
nitrogen-fixing soybean symbiont \textit{Rhizobium fredii} USDA257. Bio-
chemistry 33:11782-11788.

Bec-Ferte, M. P., Krishnan, H. B., Savagnac, A., Pueppke, S. G., and
Prome, J. C. 1996. \textit{Rhizobium fredii} synthesizes an array of lipooligo-
saccharides, including a novel compound with glucose inserted into

Broglio, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton,
S., Mauval, C. J., and Broglio, R. 1991. Transgenic plants with en-
hanced resistance to the fungal pathogen \textit{Rhizoctonia solani}. Science
254:1194-1197.

Brurberg, M. B., Ejsink, V. G. H., Haandrikman, Venema, G., and Nes,
I. F. 1995. Chitinase B from \textit{Serratia marcescens} BJL200 is exported to
the periplasm without processing. Microbiology 141:123-131.

\textit{Serratia marcescens} gene encoding chitinase. Appl. Environ. Micro-
bol. 51:504-509.

Isolation and characterization of genes encoding two chitinase en-
zymes from \textit{Serratia marcescens}. EMBO J. 5:467-473.

Keen, N. T., Tamaki, S., Kobayashi, D., and Trollinger, D. 1988. Im-
proved broad-host range plasmids for DNA cloning in Gram-negative bacteria. Gene 70:191-197.

Laemmli, U. K. 1970. Cleavage of structural proteins during the assem-

Mankau, R., and Das, S. 1969. The influence of chitin amendment on

Silver stain detection of chitinolytic enzymes after polyacrylamide gel

and microbial chitinase on the eggs and juveniles of \textit{Meloidogyne hapla}

Mian, I. H., Godoy, G., Shelby, R. A., Rodriguez-Kabana, R., and
Morga-Jones, C. 1982. Chitin amendments for control of \textit{Meloi-
doyne arenaria} in infested soil. Nematropica 12:71-84.

Miller, P. M., and Sands, D. C. 1977. Effects of hydrolytic enzymes on

Minic, Z., Brown, S., De Kouchkovsky, Y., Schultz, M., and Stachelin,
C. 1998. Purification and characterization of a novel chitinase-
lysozyme, of another chitinase, both hydrolysing \textit{Rhizobium meliloti}
Nod factors, and of a pathogenesis-related protein from \textit{Medicago sa-

Structurally diverse chitolipooligosaccharide Nod factors accumulate
primarily in membranes of wild type \textit{Rhizobium leguminosarum} bio-
vivus \textit{trifolii}. Biochemistry 34:3832-3840.

effectiveness in mutant strains of \textit{Rhizobium} by acetylene reduction
relative to other criteria for \textit{N}$_2$ fixation. Plant Soil 33:192-212.

Shapira, R., Ordentlich, A., Chet, I., and Oppenheim, A. B. 1989. Con-
trol of plant diseases by chitinase expressed from cloned DNA in \textit{Es-
cherichia coli}. Phytopathology 79:1246-1249.

Expression of \textit{Serratia marcescens} chitinase gene in \textit{Rhizobium melil-
6:293-298.

Stachelin, C., Granado, J., Muller, J., Wierken, A., Mellor, R. B., Felix,
G., Regensass, M., Broughton, W. J., and Boller, T. 1994. Perception of
\textit{Rhizobium} nodulation factors by tomato cells and inactivation by root

cloning of two chitinase genes from \textit{Serratia marcescens} and their
expression in \textit{Pseudomonas} species. Physiol. Mol. Plant Pathol. 35:
483-491.

Weller, D. M. 1988. Biological control of soilborne plant pathogens in